Dense DAISY feature descriptionΒΆ

The DAISY local image descriptor is based on gradient orientation histograms similar to the SIFT descriptor. It is formulated in a way that allows for fast dense extraction which is useful for e.g. bag-of-features image representations.

In this example a limited number of DAISY descriptors are extracted at a large scale for illustrative purposes.

../_images/plot_daisy_1.png

from skimage.feature import daisy
from skimage import data
import matplotlib.pyplot as plt


img = data.camera()
descs, descs_img = daisy(img, step=180, radius=58, rings=2, histograms=6,
                         orientations=8, visualize=True)

fig, ax = plt.subplots()
ax.axis('off')
ax.imshow(descs_img)
descs_num = descs.shape[0] * descs.shape[1]
ax.set_title('%i DAISY descriptors extracted:' % descs_num)
plt.show()

STDOUT


        

STDERR


        

Python source code: download (generated using skimage 0.11dev)

IPython Notebook: download (generated using skimage 0.11dev)

ZnJvbSBza2ltYWdlLmZlYXR1cmUgaW1wb3J0IGRhaXN5CmZyb20gc2tpbWFnZSBpbXBvcnQgZGF0YQppbXBvcnQgbWF0cGxvdGxpYi5weXBsb3QgYXMgcGx0CgoKaW1nID0gZGF0YS5jYW1lcmEoKQpkZXNjcywgZGVzY3NfaW1nID0gZGFpc3koaW1nLCBzdGVwPTE4MCwgcmFkaXVzPTU4LCByaW5ncz0yLCBoaXN0b2dyYW1zPTYsCiAgICAgICAgICAgICAgICAgICAgICAgICBvcmllbnRhdGlvbnM9OCwgdmlzdWFsaXplPVRydWUpCgpmaWcsIGF4ID0gcGx0LnN1YnBsb3RzKCkKYXguYXhpcygnb2ZmJykKYXguaW1zaG93KGRlc2NzX2ltZykKZGVzY3NfbnVtID0gZGVzY3Muc2hhcGVbMF0gKiBkZXNjcy5zaGFwZVsxXQpheC5zZXRfdGl0bGUoJyVpIERBSVNZIGRlc2NyaXB0b3JzIGV4dHJhY3RlZDonICUgZGVzY3NfbnVtKQpwbHQuc2hvdygp