Canny edge detectorΒΆ

The Canny filter is a multi-stage edge detector. It uses a filter based on the derivative of a Gaussian in order to compute the intensity of the gradients.The Gaussian reduces the effect of noise present in the image. Then, potential edges are thinned down to 1-pixel curves by removing non-maximum pixels of the gradient magnitude. Finally, edge pixels are kept or removed using hysteresis thresholding on the gradient magnitude.

The Canny has three adjustable parameters: the width of the Gaussian (the noisier the image, the greater the width), and the low and high threshold for the hysteresis thresholding.

../_images/plot_canny_1.png

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage

from skimage import filter


# Generate noisy image of a square
im = np.zeros((128, 128))
im[32:-32, 32:-32] = 1

im = ndimage.rotate(im, 15, mode='constant')
im = ndimage.gaussian_filter(im, 4)
im += 0.2 * np.random.random(im.shape)

# Compute the Canny filter for two values of sigma
edges1 = filter.canny(im)
edges2 = filter.canny(im, sigma=3)

# display results
fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 3))

ax1.imshow(im, cmap=plt.cm.jet)
ax1.axis('off')
ax1.set_title('noisy image', fontsize=20)

ax2.imshow(edges1, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('Canny filter, $\sigma=1$', fontsize=20)

ax3.imshow(edges2, cmap=plt.cm.gray)
ax3.axis('off')
ax3.set_title('Canny filter, $\sigma=3$', fontsize=20)

fig.subplots_adjust(wspace=0.02, hspace=0.02, top=0.9,
                    bottom=0.02, left=0.02, right=0.98)

plt.show()

STDOUT


        

STDERR


        

Python source code: download (generated using skimage 0.11dev)

IPython Notebook: download (generated using skimage 0.11dev)

aW1wb3J0IG51bXB5IGFzIG5wCmltcG9ydCBtYXRwbG90bGliLnB5cGxvdCBhcyBwbHQKZnJvbSBzY2lweSBpbXBvcnQgbmRpbWFnZQoKZnJvbSBza2ltYWdlIGltcG9ydCBmaWx0ZXIKCgojIEdlbmVyYXRlIG5vaXN5IGltYWdlIG9mIGEgc3F1YXJlCmltID0gbnAuemVyb3MoKDEyOCwgMTI4KSkKaW1bMzI6LTMyLCAzMjotMzJdID0gMQoKaW0gPSBuZGltYWdlLnJvdGF0ZShpbSwgMTUsIG1vZGU9J2NvbnN0YW50JykKaW0gPSBuZGltYWdlLmdhdXNzaWFuX2ZpbHRlcihpbSwgNCkKaW0gKz0gMC4yICogbnAucmFuZG9tLnJhbmRvbShpbS5zaGFwZSkKCiMgQ29tcHV0ZSB0aGUgQ2FubnkgZmlsdGVyIGZvciB0d28gdmFsdWVzIG9mIHNpZ21hCmVkZ2VzMSA9IGZpbHRlci5jYW5ueShpbSkKZWRnZXMyID0gZmlsdGVyLmNhbm55KGltLCBzaWdtYT0zKQoKIyBkaXNwbGF5IHJlc3VsdHMKZmlnLCAoYXgxLCBheDIsIGF4MykgPSBwbHQuc3VicGxvdHMobnJvd3M9MSwgbmNvbHM9MywgZmlnc2l6ZT0oOCwgMykpCgpheDEuaW1zaG93KGltLCBjbWFwPXBsdC5jbS5qZXQpCmF4MS5heGlzKCdvZmYnKQpheDEuc2V0X3RpdGxlKCdub2lzeSBpbWFnZScsIGZvbnRzaXplPTIwKQoKYXgyLmltc2hvdyhlZGdlczEsIGNtYXA9cGx0LmNtLmdyYXkpCmF4Mi5heGlzKCdvZmYnKQpheDIuc2V0X3RpdGxlKCdDYW5ueSBmaWx0ZXIsICRcc2lnbWE9MSQnLCBmb250c2l6ZT0yMCkKCmF4My5pbXNob3coZWRnZXMyLCBjbWFwPXBsdC5jbS5ncmF5KQpheDMuYXhpcygnb2ZmJykKYXgzLnNldF90aXRsZSgnQ2FubnkgZmlsdGVyLCAkXHNpZ21hPTMkJywgZm9udHNpemU9MjApCgpmaWcuc3VicGxvdHNfYWRqdXN0KHdzcGFjZT0wLjAyLCBoc3BhY2U9MC4wMiwgdG9wPTAuOSwKICAgICAgICAgICAgICAgICAgICBib3R0b209MC4wMiwgbGVmdD0wLjAyLCByaWdodD0wLjk4KQoKcGx0LnNob3coKQ==