skimage.draw.bezier_curve | Generate Bezier curve coordinates. |
skimage.draw.circle(cy, cx, radius[, shape]) | Generate coordinates of pixels within circle. |
skimage.draw.circle_perimeter | Generate circle perimeter coordinates. |
skimage.draw.circle_perimeter_aa | Generate anti-aliased circle perimeter coordinates. |
skimage.draw.ellipse(cy, cx, yradius, xradius) | Generate coordinates of pixels within ellipse. |
skimage.draw.ellipse_perimeter | Generate ellipse perimeter coordinates. |
skimage.draw.ellipsoid(a, b, c[, spacing, ...]) | Generates ellipsoid with semimajor axes aligned with grid dimensions on grid with specified spacing. |
skimage.draw.ellipsoid_stats(a, b, c) | Calculates analytical surface area and volume for ellipsoid with semimajor axes aligned with grid dimensions of specified spacing. |
skimage.draw.line | Generate line pixel coordinates. |
skimage.draw.line_aa | Generate anti-aliased line pixel coordinates. |
skimage.draw.polygon | Generate coordinates of pixels within polygon. |
skimage.draw.set_color(img, coords, color) | Set pixel color in the image at the given coordinates. |
Generate Bezier curve coordinates.
Parameters: | y0, x0 : int
y1, x1 : int
y2, x2 : int
weight : double
|
---|---|
Returns: | rr, cc : (N,) ndarray of int
|
Notes
The algorithm is the rational quadratic algorithm presented in reference [R67].
References
[R67] | (1, 2) A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012 http://members.chello.at/easyfilter/Bresenham.pdf |
Examples
>>> import numpy as np
>>> from skimage.draw import bezier_curve
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = bezier_curve(1, 5, 5, -2, 8, 8, 2)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generate coordinates of pixels within circle.
Parameters: | cy, cx : double
radius: double :
shape : tuple, optional
|
---|---|
Returns: | rr, cc : ndarray of int
Notes : —– :
|
Examples
>>> from skimage.draw import circle
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = circle(4, 4, 5)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generate circle perimeter coordinates.
Parameters: | cy, cx : int
radius: int :
method : {‘bresenham’, ‘andres’}, optional
|
---|---|
Returns: | rr, cc : (N,) ndarray of int
|
Notes
Andres method presents the advantage that concentric circles create a disc whereas Bresenham can make holes. There is also less distortions when Andres circles are rotated. Bresenham method is also known as midpoint circle algorithm. Anti-aliased circle generator is available with circle_perimeter_aa.
References
[R68] | J.E. Bresenham, “Algorithm for computer control of a digital plotter”, IBM Systems journal, 4 (1965) 25-30. |
[R69] | E. Andres, “Discrete circles, rings and spheres”, Computers & Graphics, 18 (1994) 695-706. |
Examples
>>> from skimage.draw import circle_perimeter
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = circle_perimeter(4, 4, 3)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generate anti-aliased circle perimeter coordinates.
Parameters: | cy, cx : int
radius: int :
|
---|---|
Returns: | rr, cc, val : (N,) ndarray (int, int, float)
|
Notes
Wu’s method draws anti-aliased circle. This implementation doesn’t use lookup table optimization.
References
[R70] | X. Wu, “An efficient antialiasing technique”, In ACM SIGGRAPH Computer Graphics, 25 (1991) 143-152. |
Examples
>>> from skimage.draw import circle_perimeter_aa
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc, val = circle_perimeter_aa(4, 4, 3)
>>> img[rr, cc] = val * 255
>>> img
array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0],
[ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0],
[ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0],
[ 0, 255, 0, 0, 0, 0, 0, 255, 0, 0],
[ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0],
[ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0],
[ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generate coordinates of pixels within ellipse.
Parameters: | cy, cx : double
yradius, xradius : double
shape : tuple, optional
|
---|---|
Returns: | rr, cc : ndarray of int
|
Examples
>>> from skimage.draw import ellipse
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = ellipse(5, 5, 3, 4)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generate ellipse perimeter coordinates.
Parameters: | cy, cx : int
yradius, xradius : int
orientation : double, optional (default 0)
|
---|---|
Returns: | rr, cc : (N,) ndarray of int
|
References
[R71] | A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012 http://members.chello.at/easyfilter/Bresenham.pdf |
Examples
>>> from skimage.draw import ellipse_perimeter
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = ellipse_perimeter(5, 5, 3, 4)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generates ellipsoid with semimajor axes aligned with grid dimensions on grid with specified spacing.
Parameters: | a : float
b : float
c : float
spacing : tuple of floats, length 3
levelset : bool
|
---|---|
Returns: | ellip : (N, M, P) array
|
Calculates analytical surface area and volume for ellipsoid with semimajor axes aligned with grid dimensions of specified spacing.
Parameters: | a : float
b : float
c : float
|
---|---|
Returns: | vol : float
surf : float
|
Generate line pixel coordinates.
Parameters: | y, x : int
y2, x2 : int
|
---|---|
Returns: | rr, cc : (N,) ndarray of int
|
Notes
Anti-aliased line generator is available with line_aa.
Examples
>>> from skimage.draw import line
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = line(1, 1, 8, 8)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generate anti-aliased line pixel coordinates.
Parameters: | y1, x1 : int
y2, x2 : int
|
---|---|
Returns: | rr, cc, val : (N,) ndarray (int, int, float)
|
References
[R72] | A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012 http://members.chello.at/easyfilter/Bresenham.pdf |
Examples
>>> from skimage.draw import line_aa
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc, val = line_aa(1, 1, 8, 8)
>>> img[rr, cc] = val * 255
>>> img
array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 255, 56, 0, 0, 0, 0, 0, 0, 0],
[ 0, 56, 255, 56, 0, 0, 0, 0, 0, 0],
[ 0, 0, 56, 255, 56, 0, 0, 0, 0, 0],
[ 0, 0, 0, 56, 255, 56, 0, 0, 0, 0],
[ 0, 0, 0, 0, 56, 255, 56, 0, 0, 0],
[ 0, 0, 0, 0, 0, 56, 255, 56, 0, 0],
[ 0, 0, 0, 0, 0, 0, 56, 255, 56, 0],
[ 0, 0, 0, 0, 0, 0, 0, 56, 255, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Generate coordinates of pixels within polygon.
Parameters: | y : (N,) ndarray
x : (N,) ndarray
shape : tuple, optional
|
---|---|
Returns: | rr, cc : ndarray of int
|
Examples
>>> from skimage.draw import polygon
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> x = np.array([1, 7, 4, 1])
>>> y = np.array([1, 2, 8, 1])
>>> rr, cc = polygon(y, x)
>>> img[rr, cc] = 1
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Set pixel color in the image at the given coordinates.
Coordinates that exceed the shape of the image will be ignored.
Parameters: | img : (M, N, D) ndarray
coords : ((P,) ndarray, (P,) ndarray)
color : (D,) ndarray
|
---|---|
Returns: | img : (M, N, D) ndarray
|
Examples
>>> from skimage.draw import line, set_color
>>> img = np.zeros((10, 10), dtype=np.uint8)
>>> rr, cc = line(1, 1, 20, 20)
>>> set_color(img, (rr, cc), 1)
>>> img
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=uint8)